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Abstract 

To adapt the formalism of heterogeneous chemical kinetics to a more subtle simulation 
of the chemical regularities, the reaction rate is represented as a measure of the random 
marked-point process. This is done in terms of the mathematical notions of planigons and 
random mosaics. The suggested approach permits one to preserve the existing geometric- 
probabilistic formalism for simulating the growing nuclei impingement and at the same 
time to attach a more precise meaning to the model parameters, thus making the 
discrimination procedure more efficient through checking the mathematical models for 
physical-chemical adequacy. 

THE QUEST FOR HETEROGENEOUS KINETICS 

The adequacy and efficiency of the various descriptions of chemical 
kinetics are determined, to a considerable extent, by the particular way in 
which the concept of rate is formalized. This.is manifested more clearly in 
heterogeneous kinetics because in this case the general conceptual 
definition of rate is more abstract. There are at least three essential reasons 
that necessitate a more adequate formal representation of the rate of a 
heterogeneous chemical reaction. 

(i) The numerous examples of failures of models to discriminate (long 
attributed mainly to particular reasons such as the polycrystallinity or 
polydispersity of solid particles, the irregularity of their form, the 
considerable errors in experimental data, etc.) have left no doubt that these 
failures are of fundamental origins that need to be addressed from quite 
different viewpoints. The negation (or, at least, the considerable restriction) 
of the discrimination procedure in its general philosophical aspect [l] 
(considered with respect to chemical kinetics in ref. 2) provides an 
unfavourable background for the problem under discussion. The interesting 
(although not, in all respects, indisputable) examination of the set of 
mathematical models currently in use in heterogeneous kinetics, by 
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functional analysis, has led [3] to the conclusion that these models have 
differences in mathematical form that are considerably greater than their 
differences in physical meaning. In our opinion the models subjected for 
discrimination must differ essentially in their physical (or more accurately 
their physico-chemical) meaning, which must be reflected in their mathe- 
matical forms. Therefore, an important problem is how to provide this in 
practice. 

(ii) To achieve this, at least one condition is that the models subjected 
for discrimination should represent the chemical transformations. And 
because, at any rate, one solid reagent takes part in these transformations, 
this reagent must be represented in the models as an individual chemical, 
rather than as some monodisperse or polydisperse sample consisting of 
abstract geometric (as a rule spherical) particles. This implies, in its turn, 
that the appropriate formalism is adapted for operating not only with the 
concept of composition, but also with the concept ofstructure, which has no 
basis in homogeneous kinetics where one may pass directly from the 
composition to the kinetic behavior. This is the weak link in modern theory. 

(iii) Usually the rate is defined as some derivative with respect to time. 
In homogeneous kinetics this is, as a rule, the derivative of concentration 
which may be replaced (provided that stoichiometry causes no additional 
complications) by the equivalent quantity of the extent of reaction 5 
introduced by De Donder. In heterogeneous kinetics one operates with the 
degree of conversion (Y, and it must be stressed that the analogy between 5 
and (Y in this case is quite superficial. The former is a generalized 
coordinate, i.e. a property of the system; it is associated with the chemical 
notion of stoichiometry, and no structure of the system is implied. In 
contrast, the latter (being determined by the geometric-probabilistic 
approach, i.e. by the concepts of nuclei formation and growth) implies the 
concept of structure; it has no explicit relations to any basic chemical 
notion, and the system is characterized ambiguously by this quantity, i.e. it 
is not a property of the system. These important distinctions are rarely 
taken into account and, as a result, (Y and 5 are identified implicitly. And 
this leads to additional problems concerning the discrimination procedure. 
One of the reasons why 5 may be used instead of concentration in 
homogeneous kinetics is that there is no need to take the structure into 
consideration. However, in heterogeneous kinetics this structural factor 
must be represented in the definition of rate. 

THE GEOMETRIC-PROBABILISTIC MEANING OF RATE 

In the framework of the existing approach, based mainly on the classical 
works of Kolmogorov [4], Avrami [5], Johnson and Mehl [6] and Erofeev 
[7] (recent presentations of this approach may be found, for example, in 
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refs. S-lo), the rate of the heterogeneous process is expressed as 

daldt = v(t){ 2~ I’ [L,(r) [u(C) dg] dr} 
0 r 

1 [I 
, 

X exp - L(r)&(r, t) dr 
0 11 

where (Y is the degree of conversion, L,(t) is the nucleation law, 
L,(r, t) = s:u(c) dc is the growth law, u(t) is the nucleus growth rate, K is 
the form factor, t the final time, r the current time, and l is the integration 
variable. This expression, though somewhat cumbersome, has a simple 
geometric-probabilistic meaning and is obtained by differentiation of the 
corresponding expression for (Y 

[I 
, 

(Y = 1 - exp - L(r)&(r, 0 dr 
0 1 (2) 

which is the central relationship of the theory, in a mathematical as well as 
in a logical respect. This is the expression that was deduced rigorously and 
elegantly in terms of geometric probabilities by Kolmogorov [4] and, 
practically at the same time, was obtained independently (half-intuitively) 
by Mehl and Johnson [6] with the help of their convenient visual scheme. 
The latter work inspired Avrami to formulate the combinatorial analysis of 
the problem [5]. 

We are discussing here the geometric-probabilistic meaning of eqns. (1) 
and (2), because the deduction of these relationships is based on the 
following ideas. 

(i) Reaction is localized at the interface. 
(ii) Reaction proceeds through the formation and subsequent growth of 

nuclei. 
(iii) Starting from some instant of time, the growing nuclei impinge. 
The concepts of nuclei formation and growth determine the geometric 

nature of the problem; the probability approach is required to account for 
the growing nuclei impingement. 

From this point of view the term 

Z(t) = 2K 1’ [L(r) I’u(5) di.] dz 
0 5 

in eqn. (1) represents the total length of the interface of all growing nuclei 
at the given instant t calculated assuming: (i) that these nuclei grow 
“ignoring each other”, and (ii) that a nucleus may appear in regions 
occupied not only by original phase but also by new phase (the so-called 
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extended length of the interface). The exponential factor in eqn. (1) is equal 
to (1 - cy) which follows directly from eqn. (2). According to refs. 4 and 6, 
this determines the actual interface length. Thus, a simple description of 
eqn. (1) is that the rate is proportional to the length of the interface. 

It must be stressed that it is not the content of this statement (hardly 
surprising to anybody) which is of interest in our context. It is essential that 
this intuitively obvious result is obtained without any additional assump- 
tions in the framework of the discussed geometric-probabilistic approach. 
But at the same time this simple interpretation makes it clear that eqn. (1) is 
not adequate for simulating the chemical features of heterogeneous 
reactions. Hence, the question is whether this geometric-probabilistic 
scheme can be extended to apply to these aspects. In connection with this, 
the following comments can be made. 

(1) The main relationship, eqn. (2), was obtained as a solution to the 
problem of the impingement of growing nuclei. But it must be emphasized 
that the same expression is obtained, in the equivalent form 
LY = 1 - exp(-a,,,), as a solution of a simpler (both in content and 
calculation) covering problem. Here the extended degree of conversion (Y,,~ 
has the meaning mentioned above. And thus, this seems to apply to quite 
different model situations. From this viewpoint, the principal result of ref. 4 
is the four conditions under which the onmipresent exponential relationship 
may be used to consider the growing nuclei impingement by expressing the 
actual degree of conversion through the (easily calculated) extended degree 
of conversion. 

(i) The volume (area) of the original phase is to be unlimited. 
(ii) The nucleation law is to be the Poisson one. 
(iii) The form and orientation of all nuclei have to be the same. 
(iv) The rate of nuclei growth is to be independent of the instant of its 

appearance. 
A detailed analysis [ll] has shown that these conditions cannot be 

relaxed, although a slight extension of (ii) is possible. The existing routine 
for considering mainly spherical (circular) growing nuclei is probably due to 
condition (iii), because otherwise the problem of orientation immediately 
arises. 

(2) Phase transitions rather than chemical transformations were the 
subject of the studies by Kolmogorov, Mehl and Johnson, and Avrami. It 
was Erofeev [7] who showed that exactly the same geometric-probabilistic 
scheme may also be used to obtain the well-known homogeneous kinetics 
equations of monomolecular and bimolecular reactions, through the 
appropriate interpretation and assignment of probabilities in eqn. (2) alone 
(without integrating the equations of the action mass law). And here one 
may discern the premise for analyzing the chemical regularities in terms of 
geometric probabilities. 

The problem under discussion is how this may be done in the case of 
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chemical heterogeneous reactions. And it was the fundamental interrela- 
tion between the probability and the measure [12] that gave rise to the idea 
that rate has to be represented as some measure, which may then be 
brought into correlation with the basic chemical concepts in terms of 
measure assignment. 

RATE AS A MEASURE 

Following the decision to stay within the geometric-probabilistic formal- 
ism, one has to think in terms of nuclei formation and growth. 

In terms of probability theory, it is logical to treat the formation of nuclei 
on the crystal face as a random temporal point process, because the 
appearance of each new nucleus is considered as an independent event. 
Two aspects are essential in connection with this. 

(i) The point process determines the random Voronoi mosaic on the 
plane [13]. 

(ii) The point process may be interpreted as some random measure [14]. 
Being a mathematical notion of stochastic geometry, the Voronoi mosaic 

corresponds in our context to the following fairly realistic picture. Consider 
the growth of some nuclei of new phase appeared at t = 0 (their shape being 
immaterial at present). The impingement of any two nuclei stops their 
growth in the corresponding direction without stopping it in all other 
directions After the whole crystal face is occupied with the new phase, one 
obtains the random Voronoi mosaic alone. In reality this mosaic is more 
complicated because additional nuclei may appear during the process. 

The random mosaic is characterized by its averaged cell which is always a 
hexagon [13]. It is essential for us that from the geometric viewpoint the 
random mosaic is a particular case of Dirichlet fragmentations [15]. 

So if the nuclei grow on the crystal face rather than on an abstract plane, 
one has to find an appropriate way to formalize this. We will use planigons 
[16] for this purpose, rather than the more traditional notion of a 
crystallographic lattice. The main reason for this choice is that planigons are 
another variety of Dirichlet fragmentations. There are additional advan- 
tages. Planigons provide a more fractional, more detailed description of the 
surface structure due to the fact that 46 types of planigon correspond to 
only 17 two-dimensional Fedorov groups. A single planigon contains all the 
necessary information about the symmetry of the surface, which conforms 
with the tendency to local description. It should be noted, in particular, that 
using planigons one automatically satisfies the above-mentioned criterion 
of the same orientation of all growing nuclei. This makes it unnecessary to 
operate with spherical (circular) particles (which are poorly combined with 
basic crystallographic ideas). 

And here one arrives at the non-trivial opportunity of using Dirichlet 
fragmentations for the simultaneous simulation of the nuclei formation 
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processes (in the form of random mosaics) and of the nuclei growth 
processes (in the form of planigons) within the same geometric- 
probabilistic approach. This approach implies an essentially two- 
dimensional representation of the heterogeneous reaction, the bulk process 
being considered as the combination of the surface ones. The origination 
and evolution of the reaction front on a single crystal face may be 
represented in terms of Dirichlet fragmentations. 

(1) The given crystal face is considered as the packing made up by 
planigons of a definite type corresponding to the symmetry and metric of 
the two-dimensional surface lattice. If the surface is formed by atoms of 
different elements, the choice of the center of action is determined by the 
particular reaction type, the atoms of the other elements being situated on 
the appropriate edges of the planigon. 

(2) The random appearance of separate nuclei at the very beginning of 
the process due to one or other chemical interaction is treated as the 
“entering of some planigons (or, more accurately, their centers of action) 
into reaction.” Depending on the particular type of chemical reaction, the 
nucleus may be represented by a single planigon or by a group of planigons. 
The nuclei appearance determines the random Voronoi mosaic on the 
crystal face. 

The result is the superposition of the two considered types of Dirichlet 
fragmentations: the random Voronoi mosaic superimposes on the planigon 
structure (Fig. la). 

(3) The reaction front evolves through the edges of the planigons (not 
through their vertexes) because it is the edge alone that, by definition, 

I__-a c d 

Fig. 1. a. The superposition of two different types of Dirichlet fragmentation. b. Planigons 
enter into the reaction. c. Dependencies of rate (I) and completeness (n) on time (step). d. 
The averaged cell of the random mosaic with the growing nuclei inside it. 
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bisects the nearest centers of action. This determines the “first surround- 
ing” of a nucleus, which is included in the interaction at the first “step”, i.e. 
the discrete time. Then this interaction is transmitted to the “second 
surrounding” and so on, as shown in Fig. lb. In the zero approximation, 
one may characterize (at each step) the completeness of the process (a) by 
the number of “converted” planigons (n), and the rate (&) by the number 
of edges (I) of the obtained figure, i.e. by the length of the interface. 

It is essential to emphasize here that within the approach suggested, the 
dependence of rate on time (for the stage preceding impingement of the 
nuclei) is linear, with a deviation from linearity at the very beginning of the 
process; this is independent of the type of planigon. This is in agreement 
with the empirical linearity mentioned in practically all the literature on the 
subject. 

(4) The growing nuclei impingements occur along the edges of random 
cells. In the general case the position of the nucleus inside the random cell 
may be quite asymmetric, and thus the first impingement with the nearest 
edge may occur within a small time interval. The existance of a maximum 
on the 6(t) curves (and consequently the existance of a point of inflection 
on the a(t) curves) is due to the nuclei impingements alone, their positions 
being determined by the particular geometry of these successive impinge- 
ments. Thus, continuing to hatch the squares in Fig. lb, one will get the 
curves shown in Fig. lc, which assume the habitual form in the limit of the 
large number of planigons (squares). 

(5) New nuclei appear in the course of the process, along with the 
growth of the old nuclei, causing a continuous rearrangement of the initial 
random mosaic. As a result, the corresponding averaged random cell 
(hexagon) decreases all the time. 

One of the important aspects of the suggested approach is connected 
with this rearrangement of the random mosaic. In the case of the 
simultaneous appearance of all nuclei, the edges of an averaged cell are the 
lines along which the growing nuclei impinge. To keep this role of the edges 
in the general case, one does not have to halve the distance between “old” 
and “new” nuclei but to divide it, taking into account the size of the “old” 
nucleus. Thus the random Voronoi mosaic is determined by the random 
marked-point process. 

Thus, we arrive at the model representation of the chemical reaction on a 
particular crystal face in the form of the continuously decreasing hexagon of 
the averaged cell with the continuously growing nucleus inside it (Fig. Id). 
And taking into account the possibility of introducing some measure for 
any point process [14], this permits one to represent the rate of a 
heterogeneous chemical reaction as the measure of the intensity of the 
random marked-point process. 

This definition makes it possible to take into consideration different 
types of chemical interactions as well as different types of surface 
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structures. And this seems to be the main physico-chemical argument in 
favor of using it, in spite of some abstractness. 

The developed formal scheme may acquire physical-chemical contents in 
terms of measure assignment using various chemical considerations. There 
is a wide choice of various hypotheses in these terms, that may later be 
subjected to discrimination. Because the model parameters acquire a more 
precise meaning when the basic chemical notions are considered, the 
discrimination procedure itself is enriched, for now it assesses the models 
for physic.-chemical adequacy. In the zero approximation, we characterized 
the completeness and rate of the process by the number of planigons and by 
the number of edges forming the growing figure, respectively. But in the 
next stage, it must be considered that the form and metric of the particlar 
planigon are determined uniquely by the symmetry and metric of the 
two-dimensional surface lattice and, in this way, are connected with the 
composition and structure of the solid reagent. The formation of the nuclei 
may be connected, for example, with corrosive chemisorption (chemide- 
sorption), and the corresponding model parameter acquires a meaning 
associated with the activation energy of chemisorption. As a rule, the 
reaction front evolution is somehow connected with the activated diffusion. 

This is a very brief description of the manner of measure assignment 
using chemical considerations; a more detailed discussion is beyond the 
scope of this paper and will be given elsewhere. 
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